

Gobierno de la Ciudad de Buenos Aires

Ministerio de Educación Dirección de Educación Superior

"2016 Año del Bicentenario de la Declaración de Independencia de la República Argentina"

INSTITUTO SUPERIOR DEL PROFESORADO "DR. JOAQUÍN V. GONZÁLEZ"

Nivel: Terciario

Carrera: Profesorado en Matemática

Trayecto / ejes: Disciplinar

Instancia curricular: Fundamentos de la Matemática

Formato: Materia Cursada: **Anual**

Carga horaria: 4 horas cátedra semanales Profesora: Dra. Cecilia Crespo Crespo

Curso: 4º Comisión: B

Año: 2016

Objetivos

Que los alumnos:

- conozcan y apliquen los métodos de la lógica clásica.
- interpreten el concepto de demostración utilizado en otras asignaturas.
- conozcan el concepto de sistema formal y de sistema deductivo.
- reconozcan el carácter de ciencia deductiva de la matemática.
- analicen los fundamentos de la matemática a través de la evolución y diversos enfoques de algunos conceptos básicos de esta ciencia.
- analicen la evolución y situación actual del pensamiento matemático.

Contenidos:

Unidad 1: Lenguaje de la matemática

El lenguaje de la matemática. Lenguaje y metalenguaje. Semiótica: Sintaxis, semántica y pragmática. Lenguaje natural y lenguaje matemático. Símbolos. Uso y mención.

Definiciones. Tipos de definiciones en matemática.

Unidad 2 Lógica clásica

Lógica proposicional. Cálculo de proposiciones. Conectivos. Leyes lógicas. Deducción lógica. Razonamientos válidos e inválidos. Métodos.

Lógica de Predicados de Primer Orden. Funciones Proposicionales. Cuantificadores. Razonamientos. Diagramas de Venn y Método deductivo.

Unidad 3. Los sistemas formales.

Lenguaje y metalenguaje. Semiótica: Sintaxis, semántica y pragmática.

El lenguaje lógico. Uso y mención. Lenguaje sintáctico.

Sistemas formales. Independencia, consistencia y completitud.

El Método Axiomático en la matemática.

Unidad 4. La fundamentación de la matemática. Su evolución

La matemática como ciencia deductiva, una visión histórico-epistemológica.

Fundamentación de la Geometría. Axiomáticas de Euclides y Hilbert.

Fundamentación axiomática de la Aritmética. Funciones: evolución y definiciones. Fundamentación del análisis matemático.

La validación en la matemática. La demostración en la matemática.

Las convenciones en la matemática.

Unidad 5. Metalógica y Metamatemática

Las Paradojas. Sus causas y consecuencias. Logicismo, Intuicionismo y Formalismo.

El Teorema de Gödel. La incompletitud de la matemática.

Aparición de lógicas no clásicas.

Modalidad de trabajo:

Las actividades se desarrollarán utilizando las modalidades de clase teórica y de aula taller.

Gobierno de la Ciudad de Buenos Aires Ministerio de Educación Dirección de Educación Superior

Trabajos prácticos:

Se entregarán a los alumnos trabajos prácticos que ellos deberán trabajar y analizar para realizar posteriormente las consultas que consideren necesarias.

Régimen de aprobación de la materia:

La evaluación de la asignatura se realizará a través de 2 (dos) exámenes parciales escritos en los que se combinan las modalidades presencial y domiciliaria, uno al final de cada cuatrimestre, y un examen final, en el cual el alumno será evaluado respecto de todos los contenidos de la asignatura. Cada parcial tendrá opción a 1 (un) recuperatorio.

En cada una de las instancias de evaluación se tendrá en cuenta: adquisición de los contenidos propios de la material, precisión y claridad en la formulación de conceptos y deducciones, capacidad de elaboración de conclusiones e inferencias a partir de los conceptos estudiados.

Régimen para el alumno libre:

El alumno libre deberá demostrar en el examen correspondiente conocimiento y dominio acerca de los temas teóricos y prácticos correspondientes al programa de la materia. Los exámenes libres serán indefectiblemente escritos y orales y abarcará el programa completo del curso con la bibliografía indicada. El examen escrito es eliminatorio y quedará archivado, Resolución del Consejo Directivo oct/2013

Bibliografía específica:

Campos, A. (1994). *Introducción a la lógica y la geometría griegas anteriores a Euclides*. Bogotá: Universidad Nacional de Colombia.

Campos, A. (1994). *Axiomática y geometría desde Euclides hasta Hilbert y Bourbaki*. Bogotá: Universidad Nacional de Colombia.

Copi, I. (1974). Introducción a la Lógica. Buenos Aires: Eudeba.

Datri, E. (1999). Geometría y realidad física. Buenos Aires: Eudeba.

Durán, A. (1996). Historia, con personajes, de los conceptos del cálculo. Madrid: Alianza.

Euclides. (1991). Elementos. Libros I-IV, V-IX. Madrid: Gredos.

Hamilton, A. (1981). Lógica para Matemáticos. Madrid: Paraninfo.

Kline, M. (1994). El pensamiento matemático de la antigüedad a nuestros días, I, II, III. Madrid: Alianza.

Nagel, E. (1994). El Teorema de Gödel. Madrid: Tecnos.

Newman, J.(Comp.) (1997). SIGMA El mundo de las matemáticas. Barcelona: Grijalbo.

Toranzos, F. I.: (1948). *Introducción a la epistemología y fundamentación de la Matemática*. Buenos Aires: Espasa Calpe.

Trejo, C. (1977). Matemática Elemental Moderna. Buenos Aires: Eudeba.

Bibliografía general:

Apery, R. y otros: (1998). Pensar la matemática. Barcelona: Tusquets.

Bourbaki, N. (1976). Elementos de Historia de las Matemáticas. Madrid: Alianza Editorial.

García Bacca, J. (1944). Elementos de Geometría. México: UNAM.

Gianella, A. (1996). Lógica simbólica y elementos metodología de la ciencia. Buenos Aires: El Ateneo.

Gómez, P. (1995). Sistemas Formales, informalmente. México: Iberoamérica.

Hilbert, D. (1993). Fundamentos de las Matemáticas. México: Colección Mathema. UNAM.

Kleene, S. (1974). Introducción a la metamatemática. Madrid: Tecnos.

Kline, M. (1998). Matemáticas. La pérdida de la certidumbre. México: Siglo Veintiuno.

Le Lionnais, F. (Comp.) (1976). Las Grandes Corrientes del Pensamiento Matemático. Buenos Aires: Eudeba.

Lorenzen, P. (1971). Metamatemática. Madrid: Tecnos.

Lungarzo, C. (1986). Lógica y lenguajes formales/1, 2. Buenos Aires: Centro Editor de América Latina.

Quine, W. (1993). Los métodos de la lógica. Buenos Aires: Planeta.

Smith, K. (1991). Introducción a la Lógica Simbólica. México: Iberoamérica.

Stewart, I. (2008). Historia de las matemáticas. Barcelona: Crítica.

Struik, D. (1970). La matemática sus orígenes y su desarrollo. Buenos Aires: Siglo XX.

Dra. Cecilia Crespo Crespo