

Gobierno de la Ciudad de Buenos Aires Ministerio de Educación Dirección General de Educación Superior

"2016 Año del Bicentenario de la Declaración de Independencia de la República Argentina"

INSTITUTO SUPERIOR DEL PROFESORADO "DR. JOAQUÍN V. GONZÁLEZ"

NIVEL: Terciario

CARRERA: Profesorado de Educación Secundaria en Matemática y Profesorado de Educación

Superior en Matemática

EJE: Disciplinar

INSTANCIA CURRICULAR: Álgebra II

CURSADA: anual

CURSOS: 2° "B"

HORAS SEMANALES: 5 horas cátedras

PROFESOR: Walter Fabián Bertoa

AÑO LECTIVO: 2016

I-OBJETIVOS GENERALES

Que el alumno:

- Identificar los conjuntos de matrices, sistemas de ecuaciones lineales homogéneos, transformaciones lineales, autovectores y formas bilineales como espacios vectoriales.
- Trabajar con vectores como elementos de un Espacio Vectorial.
- Provocar en los estudiantes una actitud de curiosidad frente al conocimiento.
- Aplicar los contenidos del Álgebra Lineal en otras ciencias.
- Proporcionar instancias de aprendizaje que le permitan al estudiante formarse didáctica y pedagógicamente.

II-OBJETIVOS ESPECÍFICOS

Que el alumno logre:

Modelizar matemáticamente problemas reales mediante los objetos matemáticos señalados

como contenidos.

Contar con herramientas del cálculo matricial.

Estudiar los sistemas de ecuaciones y de inecuaciones lineales y sus aplicaciones.

Conocer la estructura de Espacio Vectorial, las Transformaciones Lineales y los Espacios

Euclídeos y su aplicación al estudio de modelos particulares, como por ejemplo el estudio y la

diagonalización de matrices.

Discutir dichos conocimientos desde la problemática de su didáctica.

Aplicar los contenidos del Algebra Lineal a situaciones extra matemáticas

III-CONTENIDOS

<u>Unidad I</u>: Matrices sobre un cuerpo

Definición. Matrices especiales. Igualdad. Operaciones. Suma, multiplicación por un escalar.

Producto de matrices. Anillo de matrices cuadradas.

Determinantes: la función determinante. Propiedades. Cálculo de determinantes. Desarrollo de un

determinante, método de Laplace. Matriz cofactor. Matrices no singulares. Matriz inversa.

Matrices equivalentes por filas. Matrices escalonadas.

Unidad II: Sistemas de ecuaciones lineales

Sistemas de m ecuaciones con n variables. Teorema de Roche-Frobenius-Kroenecker.

Compatibilidad de un sistema. Sistemas equivalentes. Propiedades. Método de Gauss.

Aplicaciones.

Sistemas homogéneos. Clasificación según el número de soluciones. Resolución matricial.

Teorema de Cramer.

<u>Unidad III</u>: Espacio vectorial sobre un cuerpo

Definición axiomática. Propiedades y modelos particulares. Subespacios.

Dependencia e independencia lineal. Generadores. Base y dimensión de E.V.. Isomorfismos.

Elementos de la geometría analítica en forma vectorial. Variedades lineales afines.

<u>Unidad IV</u>: Transformaciones lineales y matrices asociadas

Transformaciones lineales. Definición y propiedades. Las transformaciones geométricas. Núcleo e

imagen de una transformación lineal (T.L.). Clasificación de las T.L.. Matriz asociada a una T.L..

Operaciones. Transformación inversa. Subespacios invariantes respecto de una T.L.

<u>Unidad V</u>: Espacios afines y métricos

Definición de espacio vectorial métrico o Euclídeo. Producto interno. Axiomática. Propiedades.

Ángulos Transformaciones ortogonales y matrices asociadas. Bases ortonormales. Complemento

ortogonal. Grupo ortogonal.

Unidad VI: Cambio de base en un Espacio Vectorial

Matriz de pasaje. Matrices de T.L. referidas a bases canónicas y bases cualesquiera. Equivalencia y

semejanza .de matrices sobre $\,\mathfrak{R}\,$.

Aplicaciones a la Criptografía.

<u>Unidad VII</u>: Formas multilineales, bilineales y cuadráticas

Formas bilineales y cuadráticas. Definición. Equivalencia de formas cuadráticas. Congruencia de

matrices. Aplicaciones. El determinante como una forma multilineal alternada.

<u>Unidad VIII</u>: Autovalores, autovectores y diagonalización

Autovalores y autovectores. Definición y propiedades. Ecuación característica. Diagonalización de

matrices sobre $\,\mathfrak{R}\,$. Teorema fundamental y otros teoremas anexos.

Matrices simétricas reales. Reducción de cónicas y cuádricas a la forma canónica. Apliación a las

ecuaciones de recurrencia.

Matrices sobre C. Matrices hermíticas y unitarias. Producto hermítico. Propiedades. Equivalencia y

semejanza de matrices sobre C.

IV-MODALIDAD DE TRABAJO

Presencial, clases teórico prácticas

V-TRABAJOS PRÁCTICOS

Se prevé la elaboración y la defensa de un trabajo práctico domiciliario y grupal.

VI-RÉGIMEN DE APROBACIÓN DE LA MATERIA:

Con examen final

Para aprobar la cursada de la asignatura los alumnos deberán cumplir con el 60% de la asistencia a clase, aprobar el trabajo práctico propuesto con su respectiva defensa, y dos exámenes parciales o sus respectivos recuperatorios. Aquellos alumnos que no pudieran aprobar los parciales o sus respectivos exámenes recuperatorios, podrán rendir un examen integrador en la instancia de

febrero-marzo (en la primera fecha de examen final).

Para aprobar la asignatura se rendirá un examen final con una nota mínima de cuatro puntos.

VII- BIBLIOGRAFÍA

La bibliografía que se propone es de consulta permanente para los alumnos:

de Burgos, J., Álgebra Lineal, Ed. McGraw-Hill, Madrid.

Grossman, S., Álgebra Lineal con aplicaciones, Ed. McGraw-Hill, México.

Kozak Ana M. y otros, *Nociones de geometría Analítica y Álgebra Lineal*, Mc Graw Hill, Argentina

Lang, S., Introducción al Álgebra Lineal, Addison – Wesley Iberoamericana, New York.

Lipschutz, S., Álgebra Lineal, Ed. McGraw-Hill, México.

Pita Ruiz, C., Álgebra Lineal, Ed. McGraw-Hill, México.

Poole D., Álgebra Lineal una introducción moderna, Ed. Thomson, México

Rojo, A., Álgebra II, Ed. El Ateneo, Bs. As.

Strang, G. Álgebra Lineal y sus aplicaciones, Addison – Wesley Iberoamericana, New York.

Prof. Lic. Walter Fabián:Bertoa