

Gobierno de la Ciudad de Buenos Aires Ministerio de Educación Dirección de Educación Superior

Instituto Superior del Profesorado "Dr. Joaquín V. González"

INSTITUTO SUPERIOR DEL PROFESORADO "DR. JOAQUÍN V. GONZÁLEZ"

Nivel: Terciario

Carrera: Profesorado en Matemática

Trayecto / ejes: disciplinar

Instancia curricular: Matemática Aplicada I

Cursada anual

Carga horaria: 4 horas semanales

Profesora: Dra. Virginia V. Fernández:

Año:2011

Fundamentación de la propuesta

En el diseño del plan de trabajo para la asignatura de matemática aplicada I, se ha tenido en cuenta el contexto científico-tecnológico y educacional en el que se debe ubicar la asignatura; y el rol que debe cumplir dentro del programa general del profesorado de matemática y su proyección en la enseñanza media y superior.

En matemática aplicada I se pretende aplicar, de manera integrada los conceptos matemáticos ya adquiridos en disciplinas anteriores.

La idea es trabajar en problemas teóricos donde se pongan en evidencia claramente la manera de modelarlos, analizarlos y resolverlos, utilizando un bagaje lógico-formal adecuado. Para que esto sea posible, se han tomado una serie de capítulos de la física que permiten justamente lograr el objetivo que aquí se propone.

Esta disciplina, también tiene como meta, mostrar al alumno del profesorado como se trabaja en de manera interdisciplinaria, en este caso, la interrelación y la interacción entre matemática y física; y los capítulos de la física elegidos para este propósito permitirán ese feedback.

En síntesis, en la asignatura se hará evidente la utilización de la matemática como herramienta fundamental para modelar e interpretar fenómenos físicos; y se verá, como los problemas concretos, que en este caso plantea la física, son resueltos utilizando el lenguaje matemático adecuado y el marco lógico-formal para tal finalidad.

Cave señalar que en los días de hoy la aplicabilidad de la matemática se ha extendido a otras ramas del conocimiento, biología, economía, historia, arqueología, informática, entre otras. La matemática aplicada es hoy una de las disciplinas de conocimiento de mayor expansión y con mayor aplicabilidad en el mundo real.

Objetivos

- Analizar, interpretar y aplicar las leyes fundamentales del electromagnetismo.
- Utilizar todas las herramientas necesarias del cálculo vectorial para analizar, interpretar y aplicar las leyes de Maxwell.
- Comprender, analizar y sintetizar los modelos matemáticos que subyacen en los problemas trabajados
- Desarrollar estrategias, métodos lógicos, gráficos para la resolución de problemas específicos.
- Trabajar con guías específicas que permitan ganar confianza, destreza, y habilidad en el planteo y solución de problemas.
- Utilizar métodos y estrategias propias de la matemática como aplicación a temas específicos de la física.
- Adquirir un conocimiento unificado de la matemática aplicada.

Contenido

Unidad 1: Electrostática

Carga eléctrica. Ley de Coulomb. Campo eléctrico. Flujo de campo eléctrico. Ley de gauss. Gradiente de potencial. Potencial eléctrico.

Unidad 2: Corriente eléctrica

Densidad e intensidad de corriente eléctrica. Conductividad y resistividad. Ley de Ohm. Resistencia eléctrica. Ley de Joule. Fuerza electromotriz. Ley de Kirchhoff.

Unidad 3: Magnetismo

Campo magnético inducida por una corriente eléctrica Circulación de campo magnético. Ley de Ampere. Ley de Biot Savart. Conductores en campos magnéticos. Fuerza de un campo magnético sobre una corriente eléctrica. Momento magnético. Dipolo magnético.

Unidad 4: Inducción magnética

Flujo del campo magnético. Ley de Gauss del magnetismo. Fuerza electromotriz inducida. Ley de faraday. Ley de Lenz. Inducción mutua. Autoinducción

Unidad 5: Electromagnetismo-Ecuaciones de Maxwell

Campo electromagnético no estacionario. Corriente de desplazamiento de Maxwell. Ley de Ampere-Maxwell. Ecuaciones de Maxwell. Ondas electromagnéticas velocidad de la luz. Campo electromagnético y Radiación dipolar.

Unidad 6: Relatividad

Reseña histórica. Postulados y transformaciones de Lorentez. Masa, energía y momento lineal relativístico. Balance de energía. Conceptos elementales de la relatividad generalizada.

Unidad 7: Introducción a la Física cuántica

El fotón. Efecto fotoeléctrico. Efecto Compton. Ondas de De Broglie. Principio de incertidumbre de Heisenbrg. El átomo de Bohr. Spin del electrón. Ecuación de Schrödinger.

Unidad 8: Matemática Aplicada

Trabajo monográfico de matemática aplicada donde se muestre explícitamente la participación de la matemática como herramienta principal para rolver problemas específicos en diferentes campos del conocimiento

Dinámica de trabajo

La dinámica de trabajo seguirá dos direcciones específicas, ellas son: Las clases tendrán carácter teórico-prácticas. Resolución de guía de ejercicios, específicos para cada unidad trabajada. Presentación de un trabajo monográfico

Bibliografía

Física Vol.II, Alonso-Finn. Ed. Addison Wesley. (Obligatoria). Física Vol. II P. A. Tipler. Ed Reverté. (Obligatoria) Electricidad y Magnetismo, Berkeley physycs coure Vol.2. Ed. Reverté. (Consulta) Física II, Serway. Ed. Mc Grow Hill. (Consulta)

Régimen de aprobación de la materia

La evaluación tiene como objetivo examinar la adquisición de contenidos específicos; la claridad en la formulación de las soluciones, y la exposición lógica la resolución de problemas.

Durante el transcurso de la materia, se efectuaran 2 (dos) parciales; cada uno de ellos constará de 1 (uno) recuperatorio.

Aprobación <u>sin</u> **examen final:** haber aprobados los trabajos prácticos y los 2 (dos) parciales con nota mínima 6 (seis); y aprobada la monografía

Aprobación <u>con</u> examen final: Para tener derecho a rendir un *examen final*, el alumno deberá aprobados los trabajos prácticos y los 2 (dos) parciales con nota mínima 4 (cuatro); y aprobada la monografía

Régimen para el alumno libre: Los exámenes libres serán indefectiblemente escritos y orales y se rendirán frente a un tribunal de profesores. El examen abarcará el programa completo del curso con la bibliografía indicada. El examen escrito es eliminatorio y quedará archivado.

Prof. Dra. Virginia V. Fernández